Acta Cryst. (1971). B27, 624

Structure Cristalline et Moléculaire de la Bromo-3-décalone-2

PAR J. LAPASSET AND J. FALGUEIRETTES

Laboratoire de Minéralogie Cristallographie, Faculté des Sciences de Montpellier, France

(Reçu le 16 juin 1970)

The crystal structure of 3-bromo-2-decalone, $C_{10}H_{15}BrO$, has been determined from three-dimensional data collected on a single-crystal diffractometer with Cu K α radiation. The data were corrected by an original method for the effect of crystal decomposition in the X-ray beam. The crystals are orthorhombic, space group $P2_12_12_1$ with lattice constants $a=23\cdot53$, $b=7\cdot87$, $c=5\cdot43$ Å, Z=4. Refinement was carried out by the full-matrix least-squares method for 1127 observed reflexions. The final R value was 0.054.

La bromo-3-decalone-2 a été synthétisée dans le laboratoire de M. Casadevall, Faculté des Sciences, Montpellier.

Nous avons entrepris l'étude cristallographique de ce produit afin de préciser sa conformation moléculaire et comparer celle-ci à celle du dérivé chloré correspondant.

Partie expérimentale

Nous avons obtenu des cristaux en forme d'aiguille aplatie par évaporation lente d'une solution de bromo-3-décalone-2 dans l'hexane.

Une étude préliminaire sur chambre de Weissenberg et chambre de précession a permis de déterminer le groupe spatial et la valeur des paramètres. Nous avons terminé la mesure précise de ces derniers sur un diffractomètre semi-automatique Enraf-Nonius.

Données cristallographiques

a = 23	3,53 ± 0,02 Å	
b = 2	7,87 <u>+</u> 0,02 Å	$V = 1006 \text{ Å}^3$
$c = \frac{4}{2}$	5,43 <u>+</u> 0,01 Å	

Coefficient linéaire d'absorption: $\mu_l = 58 \text{ cm}^{-1}$.

Groupe spatial $P2_12_12_1$, d'après les extinctions systématiques.

Densité mesurée $1,55 \pm 0,02$

Densité calculée 1,54.

Comme pour la chloro-3-décalone-2 (Lapasset & Falgueirettes, 1971) nous avons constaté le dédoublement spontané du racémique en cristaux droits et gauches.

Le cristal utilisé pour la mesure des intensités formait une aiguille de section rectangulaire: le plus grand côté correspondant la à face {010} mesurait 0,23 mm et le plus petit côté à la face {100} mesurait 0,054 mm.

La bromo-3-décalone-2 se décompose rapidement sous l'action des rayons X; la décomposition est environ deux fois plus rapide que celle de son homologue chloré: un cristal de dimensions analogues à celles du cristal cité précédemment et constamment exposé aux rayons X (rayonnement $K\alpha$ du cuivre) est détruit au bout de trois jours environ. Les mesures d'intensité ont été faites à la température ambiante sur un diffractomètre manuel. Toutes les 1127 réflexions possibles ($\theta < 68^\circ$) ont été explorées.

Nous avons utilisé le rayonnement $K\alpha$ du cuivre filtré par du nickel. Le faisceau de rayons X a été coupé immédiatement après chaque mesure afin de diminuer au maximum l'attaque du cristal.

Facteur correctif d'intensité

Il était nécessaire de tenir compte de l'effet destructeur des rayons X sur le cristal, qui entraîne corrélativement un affaiblissement des intensités diffusées en fonction du temps d'exposition.

Pour cela, nous avons mesuré chaque jour trois réflexions de référence, d'indices, 060, 160 et 004. Nous avons constaté qu'à temps d'exposition égal, le facteur d'affaiblissement Q(h,k,l,t) de chacune de ces réflexions n'était pas le même; t représente le nombre de jours écoulés depuis le début des mesures.

Q(0,0,4,12)=2,15 alors que pour la réflexion 060 nous avions, toujours pour le 12e et dernier jour de mesure:

Q(0, 6, 0, 12) = 1,65. Comme la réflexion 004 est plus lointaine que la 060, nous avons supposé que l'affaiblissement augmentait avec sin θ/λ .

Afin de préciser la loi de variation, nous avons mesuré, toujours le dernier jour, les réflexions h00, 0k0 et 00l. Nous avons constaté une anisotropie dans les variations du facteur Q qui varie non seulement avec le module du vecteur diffusion S, mais également avec sa direction.

Nous avons porté sur la Fig. 1 les variations de Q en fonction du temps pour les réflexions 060, 160 et 004. La Fig. 2 représente les valeurs de Q pour t=12 jours en fonction de |S|, pour les réflexions h00; on remarque que lorsqu'on se déplace sur une rangée de l'escape réciproque passant par l'origine, Q croît linéairement en fonction de |S|.

Nous pouvons expliquer qualitativement ces variations de la façon suivante: l'effet destructeur des rayons X se fait sentir dans tout le volume cristallin et il se produit surtout une destruction partielle de l'ordre à grande distance; la perte de matière diffusante paraît être négligeable en première approximation. Cette destruction de l'ordre à grande distance entraîne des variations de l'affaiblissement en fonction de |S|. D'autre part, le produit étudié cristallisant dans le système orthorhombique, il n'existe aucune raison pour que la destruction de la périodicité cristalline, qui dépend certainement des propriétés physiques du cristal, soit la même dans toutes les directions de l'espace, ce qui explique les variations de Q suivant les directions de S.

Considérons un temps d'exposition t fixe; à un facteur correctif donné correspondent trois valeurs différentes de |S| suivant les trois directions OX, OY, OZ du réseau réciproque. Soient S_X , S_Y , S_Z ces trois valeurs. Nous avons supposé, toujours pour t constant, que le facteur Q était le même pour les réflexions situées sur un ellipsoïde d'axes principaux OX, OY, OZ les valeurs respectives des demi-axes étant S_X , S_Y et S_Z . Comme de plus Q varie linéairement avec |S| lorsque la direction du vecteur diffusion est fixe, nous aurons:

Fig. 1. Variations du facteur d'affaiblissement, Q, en fonction du temps d'exposition, pour les reflexions 004, 160, 060.

Fig. 2. Variations du facteur d'affaiblissement, Q, en fonction de sin θ/λ pour les reflexions h00 à temps d'exposition constant (t=12).

$$Q(h,k,l,t) = 1 + T(0,0025h^2 + 0,012k^2 + 0,084l^2)^{1/2}; \quad (1)$$

les coefficients de h^2 , $k^2 l^2$ sont déterminés expérimentalement;

T est un facteur qui dépend seulement du temps d'exposition; T=0 si t=0 et T=1 si t=12 jours.

Pour une réflexion donnée, la courbe expérimentale donnant le facteur d'affaiblissement en fonction du temps, a une allure d'hyperbole très tendue que nous avons pu assimiler à une droite. Nous aurons donc T=(t-1)/11 et finalement:

$$Q(h,k,l,t) = 1 + \frac{t-1}{11} (0,0025h^2 + 0,012k^2 + 0,084l^2)^{1/2}.$$
 (2)

Ibers (1969) avait constaté, dans le cas analogue d'un cristal se décomposant sous l'action des rayons X, que les variations des intensités diffusées par ce cristal dépendaient non seulement de la durée totale d'exposition mais également de la direction et du module du vecteur diffusion S. La correction d'intensité qu'il a effectuée plus précise que la nôtre en ce qui concerne les variations d'intensité diffusée en fonction de la durée totale d'exposition aux rayons X. Cependant, cette correction ne tient pas compte des variations, pourtant très importantes, de l'affaiblissement suivant la direction et le module de S. Une amélioration de la méthode de correction que nous avons employée consisterait à remplacer le terme T de la formule (1) qui rend compte de l'affaiblissement des intensités suivant la durée totale d'exposition par un terme quadratique analogue à celui utilisé par Ibers: $T = T_0 + a_1 t + a_2 t^2$, les coefficients T_0 , a_1 et a_2 pouvant être également déterminés par affinement.

Après avoir multiplié chaque intensité mesurée par le facteur correctif de destruction correspondant, nous avons procédé aux corrections de Lorentz-polarisation, d'absorption et de volume irradié. Ces deux dernières corrections ont été effectuées à l'aide d'un programme écrit en FORTRAN par A. Escande pour IBM 360-40.

Détermination de la structure

Nous avons déterminé précédemment (Lapasset & Falgueirettes, 1971) la structure du substitué chloré. L'hypothèse obtenue a été reprise comme hypothèse de départ pour le composé bromé. Nous avons obtenu R=0.18 avec $R=\sum |F_o-kF_c|/\sum F_o$. Nous avons ensuite affiné cette hypothèse à l'aide d'un programme de moindres carrés, écrit au laboratoire. Nous avons affecté chaque atome d'un coefficient d'agitation thermique isotrope. La position des atomes d'hydrogène a été fixée a priori en fonction des coordonnées des atomes de carbone auxquels ils sont liés (longueur de la liaison C-H 1,07 Å); ces positions ont été réajustées après chaque cycle; le coefficient d'agitation thermique isotrope de chaque atome d'hydrogène a été fixé à 3,5 Å². En trois cycles d'affinement, le facteur R est descendu à 0,10 et s'est stabilisé à cette valeur.

La suite des calculs a été effectuée à l'aide d'une version modifiée du programme d'affinement par la méthode des moindres carrés de Busing, Martin & Levy (1962). Nous avons utilisé une agitation thermique anisotrope pour tous les atomes autres que les atomes d'hydrogène. La quantité minimisée était $\sum w|F_o - KF_c|^2$. Les poids ont été pris égaux à 1.

En trois cycles d'affinement, le facteur R est descendu à la valeur R=0,054 pour toutes les réflexions non nulles et à R=0,059 pour l'ensemble des réflexions y compris les extinctions fortuites. Nous n'avons pas constaté de variations importantes de l'erreur $|F_o - KF_c|$ en fonction de F_o ou de S pouvant justifier l'utilisation d'un système de poids différents de 1. Le Tableau 1 contient la liste des facteurs de structure observés et calculés, le Tableau 2 celle des paramètres de position et d'agitation thermique.

Pour connaître le bien-fondé des corrections effectuées sur les intensités à l'aide de la formule (2), nous avons repris les calculs d'affinement en utilisant comme données les valeurs des facteurs de structure pour lesquelles cette correction n'avait pas été faite. Nous avons doté d'un facteur échelle différent chaque ensemble de réflexions mesurées le même jour (12 facteurs échelle au total). Nous avons effectué deux cycles d'affinement dans les mêmes conditions que précédemment en considérant en sus les 12 facteurs échelle comme des paramètres. Le facteur R est passé de la valeur R=0,11 à

Tableau 1. Facteurs de structure observés et calculés

	HKL	Fo	Fc	Α	В	Н	ΚL	Fo	Fc	Α	в	Ηł	٢L	Fo	Fc	Α	в	Н	KL	Fo	Fc	Α	в
-3 = -4 = -4 = -2 = -4 = -2 = -1 = -1 = -1 = -1 = -1 = -1 = -1				A	B 6.36(-3) -34,74 -34,75 -34,50 -34,75 -15,50 -15,50 -15,50 -22,30 -5,20 -22,30 -5,20 -2,246 -5,20 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -1,11,80 -6,20 -1,2,55 -2,246 -6,23 -2,246 -6,23 -1,2,55 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -2,246 -6,23 -2,246 -5,35 -1,25 -5,20 -1,2,45 -5,20 -1,2,45 -5,20 -1,2,45 -5,20 -1,2,45 -2,246 -6,23 -2,246 -5,35 -1,2,55 -2,246 -5,35 -1,2,55 -5,20 -1,2,55 -5,20 -1,2,45 -5,20	R 9 9 U 11 2 3 4 5 6 7 8 9 U 11 2 4 5 6 7 8 9 U 11 2 4 5 6 7 8 9 U 11 2 4 5 6 7 8 9 U 11 2 1 3 5 6 7 8 9 U 11 2 4 5 7 8		$\begin{array}{c} \textbf{Fo} \\ \textbf{4.76} \\ \textbf{4.77} \\ \textbf$	Fc 4.68 9.11 24.28.29 9.11 24.25 12.24.27 3.24.29 9.12 12.24.27 3.24.29 9.12 12.24.27 3.24.29 9.12 12.24.27 12.27	$ \begin{array}{c} \textbf{A} \\ \textbf{2.20} \\ \textbf{122.29} \\ \textbf{2.43} \\ \textbf{2.443} \\ \textbf{2.4444} \\ 2$	B -3.42 (4.44) -2.4.44 (-4.44) -2.4.44 (-4.44) -2.4.44 (-4.44) -2.4.44 (-4.44) -1.4.44 (-4.44) -1.4.44 (-4.44) -1.4.44 (-4.44) -1.4.44 (-4.44) -2.4.44	H 19221 1 4 2 5 6 7 8 9 10 12 14 15 6 7 8 9 10 11 2 4 5 6 7 8 9 10 11 2 14 15 10 11 2 14 15 10 11 11 11 11 11 11 11 11 11 11 11 11			$ \mathbf{F}_{1,2,2,4,4,7,7,7,4,4,7,7,7,4,7,7,7,4,7,7,7,7$	$ \begin{array}{c} A \\ 2.111 \\ 2.011 \\ -2.414 \\ -2$	$\begin{array}{c} \textbf{B} \\ \textbf{7.12} \\ \textbf{-5.36} \\ \textbf{5.12}, \textbf{5.5} \\ \textbf{-2.485} \\ \textbf{12.55} \\ \textbf{-2.485} \\ $	H 11233178 90112456778901123456778001123456778012234680223468012234567890212311545579001228901568012235912456	K 0000111111111111111111111111111111111	$\begin{array}{c} \textbf{F0} \\ \textbf{3.66} \\ \textbf{5.73} \\ \textbf{5.75} \\ \textbf{5.76} \\ \textbf{5.76} \\ \textbf{5.76} \\ \textbf{5.77} \\ \textbf$	$\begin{array}{c} \textbf{Fc} & \textbf{+}, +$	$ \begin{array}{c} A \\ 0.0 \\ $	B -4.77 -10.04 -5.42 -5.22 -0.57 -2.21 -12.22 -0.57 -2.21 -2.22 -0.57 -2.21 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.22 -0.57 -2.25 -0.57 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -0.55 -2.25 -2

Tableau 1 (suite)

ΗKI	_ Fo	Fc A	в	ΗΚΙ	- Fo	Fc	Α	в	нк	L Fo	Fc	Α	R	Н	ΚL	. Fo	Fc	Α	в
2 ((67.CC	75.63 - 25.63 100.45 100.45	(.) (.)	18 6 J 20 6 J	8.74 8.15	9.14 7.87	-9.14	0.0	é é 7 é	1 22.76	21.40	-17.66 1	1.75	18 20	1 2	16.53	17.16	-4.17 -7.91	16.44 -14.33
10 (0	£2.16 25.14	62.16 -62.16 24.51 -24.51	- 1-1 - 1-1	21 6 1)	7.68	8.97 16.19	0.0 - 16.19	8.57	5 4	1 46.14	45.57	15.31 -4	2.93	21 24	1 2	12.83	13.53	-13.52	0.57 6.35
12 C C	42.05	30.54 30.54	C.U	37.0	13.69	14.93	0.0 -1 -21.10	4.91	10 4	1 11.62	36.26 18.24	2.44 3 -1.46 1	6.2U E.18	25	1 2 2 2	5.28	6.31 12.38	5.39 -7.23	-3.28
1e C C	22.12	22.86 -22.86	C.U U.U	573	5.38	6.12 14.95	0.0	6.12	12 4 13 4	1 21.30	14.46	-11.55 -1	6.Cl 9.30	3	2 2	78.77	82.14	-7.85	27.98
20 C C	2.50	15.45 -15.45	C.O C.C	87U 970	27.09	27.97	27.97	3.26	14 4	1 16.54	36.40	16.47 -2	4.14 3.78	5	2 2 2	59.38 30.19	61.35 30.61	-5.10	-10.55
24 C C	12.62	15.12 15.72 1.5e -7.5e	0.U C.Q	10 7 0	24.90 4.18	26.32	-26.32	0.0 5.18	16 4	1 10.26	21.24 E.24	-0.25	0.08		2 2	44.33	23.64	15.82	-17.57
1 1 0		2,46 3.46 55.63 0.0	-55.83	16 7 0	13.01	12.33	-12-11	0.0	20 4	1 11.15	11.17	4. 87 -1	0.48	10	2 2	51.35	51.10	0.55	51.10
2 1 0	41-64	43.25 6.0	43.35	0 8 0	15.77	15.40	15.40	0.0	22	1 5.64	5.61	1.35	5.51	12	2 2	8.21	7.99	-0.42	-7.58
	1.1	85.53 G.C	85.93	280	6.75	8.67	-8.67	0.0			6.45	-3.57 -	5.14	14	2 2	20.51	20.63	7.30	-19.30
111	11.26	13.16 C.O	-53.16	4 8 0	7.26	A.01	-8.01	0.0		21.26	21.20	21.62 -	3.43	16	2, 2,	23.80	23.20	7.42	21.55
510	44.66	42.01 0.0	42.67	783	10.72	12.02	U.0 1	2.02		1 44.46	42.02	42.63	4.17	18	2 2	8.11	6.56	-3.41	-5.60
11 1 0	11.14	51.02 0.0 15.58 15.58	51.02	980 1280	11.68	11.25	0.0 -1	1.25		1 14.75	14.07	11.25 -	8.35	20 21	2 2 2 2	13.31	13.19	-3.45	-12.75
12 1 0	21.58	76.65 C.U 25.58 -25.58	-76.65	14 8 U 15 8 U	5.29	5.81	-5.81 0.0 -	0.0	1	1 21.52	26.64	15.55 -	5.15	22 24	2 2 2 2	12.44	11.85	-0.28 -0.78	11.85 -3.81
15 1 0	\$	6.5) C.C 15.86 15.86	8.97	590	9.82	10.21 8.09	0-0 1 U-0 -	0.21	10 1	1 36.62	21.24 -	17.76 1.	2.20	25 26	2 2 2 2	4.28	6.36 6.00	6.34 -2.17	-0.51
17 1 0	22.00	22.13 -22.13	37.55	890	5.38	7.10	0.0	0.0 9.21	11 12	1 24.88 1 8.15	1.46	-0.68 -	3.78	2	3 2	47.12	47.28	35.96	30.71
10 1 0	15.0	17.15 -17.15	-34.0U G-0	2 0 1	37.36	35.44	0.0 -15	2.24	12	1 12.10	12.51	2.31 -	2.67	3	3 2	51.79	53.95	30.66	-10.78
22 1 0		e.30 0.0	6.30	6 0 1	26.04	23.71	0.0 2	3.71	17	15.45	12.22	15.17		7	3 2	25.60	25.77	14.71	21.17
	5.10	10.56 0.0	-16.56	8 0 1	30.02	30.08	0.0 3	0.02	20	4.52	4.45	-G.3e	4.47	10	3 2	13.52	13.72	6.79	11.92
1 1 1	42.15	42.15 0.0	-42.75	10 0 1	70.90	69.94	U.0 -6	9.94		5.41	12.77	-1.66	2.15	11	3 2	27.23	26.23	24.09	-10.38
111	41.20	66.C7 C.L	86.07 C.C	13 0 1 14 0 1	30.00	28.65	0.0 -2	8.71	1 4	1 22.67	32.65 -	32. 81	2.35	13	3 2 3 2	12.33	12.08	8.98	8.02
6 2 0	12.46	11.66 C.C	- £7.66 (.6	15 U 1 16 0 1	29.19 38.53	29.06 38.48	0.0 2	9.06	2 6	4.56	1.12	1.54	9.72	15 16	3 2 3 2	50.34 10.22	49.34 9.50	-49.31 9.24	1.71 2.23
	45.15	46.18 6.6	-46.18	17 0 1 18 0 1	21.49	21.12 9.92	0.0 -2	9.92	5 6	1 20.71	20.17 14.08	13.46 1	5.80	17 18	3 2	19.48	18.82	18.82	0.05
10 1 0	36.44	28.22 -28.22	c.0	20 0 1	23.35	25.10	0.0 2	5.10	1 6	31.52	3.12	2.26 -	.24	20	3 2	10.05	9.78	-2.40	9.48
	11.11	16.42 16.42	C.U	22 0 1	12.13	12.55	0.0 -1	2.55	10 2		12.20	-3.68 1	.15	22	3 2	4.46	3.85	3.40	1.01
19 1 0	46.44	40.20 0.0	4C.20	24 U 1 26 0 1	2.78	2.43	0.0 1	2.43		11.25	11.14	10.11 -	.44	25	3 2	4.30	4.78	-1.39	4.57
17 2 0	11.41	16.32 6.6	-16.32	0 1 1	48.17	49.57	0.0 4	9.57	14 e 19 e	5.48	5.20	-7.41 -	5.61	1 2	4 2	36.51	35.88	-34.94	8.1e -22.04
21 2 0	11.60	12.68 G.O 15.50 C.C	12.88	2 1 1 3 1 1	26.42	24.52 92.45	-22.15 1 88.39 2	C.53 7.10	16 E 17 E	1 16.40	16.25	-4.65	9.16	4	4 2	28.36	28.07 43.01	8.69	26.65
	1 3.KC	1.41 1.45 4.55 C.C	(.0 -6,99	3 1 1	71.68 56.51	71.79	59.58 -4 -35.83 -4	0.04 3.66	18 e 20 e	10.17	16.15	16.65 -1	.43	6 7	4 Z 4 Z	28.26 48.70	26.77 48.59	-25.88 -48.13	6.82
	4.40	1.12 -5.12 7.11 C.C	0.0 7.17	6 1 1	42.38	64.51 41.19	-28.74 2	4.50	21 e 0 i	22.34	4.18	1.11 -4 C.C -2	2.03	8	4 2	23.21	22.33	18.42	-12.63
2 2 2	48.75	45.68 -65.88	0.0	9 1 1	67.88	64.42	60.04 -2	3.33	2 1	14.66	14.45	-0.35 14		10	4 2	28.69	27.53	20.21	-13.01
	41.51	42.12 0.0	-42.82		12.06	11.48	-11.48	0.12	4	11.12	16.65	4.46 1	8.36	14	÷ 2	13.49	11.75	2.71	-11.42
7 2 6	11.36	11.51 0.6	11.51	13 I I 14 I I	22.30	21.04	-10.42 1	8.21	é ;	11.14	22.50	-7.20 -22	.78	16	2	12.03	12.25	3.83	11.64
\$ 2 A	42.41	5.25 C.C 42.22 42.32	5.25 C.C	15 1 1	28.20	26.44	25.38 -	7.39	8 1	6.0	1.11	-1.55	5.18	18	4 2	16.68	16.63	-11.26	-12.24
11 2 0	16.12	18.52 C.C 21.37 C.G	-18.52 21.37	17 1 1	15.40	14.87 19.35	-13.84 -	5.44	11 1 12 1	1 1.42	1.05	- 6. 64 1 - 1. 52 - 19	.62	20 22	4 Z 4 Z	13.33	12.90	11.39 2.50	-6.06
14 2 4	27.16	26.06 -26.08	C.0 C.0	21 1 1 1 22 1 1	14.66	16.15	14.44	0.48	12 1	11.00	11.45	1.23	9.92 5.47	23 24	4 2 4 2	8.05	11.09	9.95 -6.40	4.51
17 2 0	10.10	5.15 -5.55	-15.53 C.C	24 1 1	9.73	10.27	-11.60 -	8.30		4.12	4.82	-0.50	.86	Î	5 2	9.04	35.33	-3.42	-35.23
20 1	12.12	14.25 -14.25	u.0	27 1 1	5.88	6.63	5.62 -	3.53	9 8	1.57	\$.22	5.23 C	G	4	5 2	18.50	17.57	-13.11	11.70
4	4.50	4.12 -4.13	C.0	1 2 1	67.12	67.26	65.15 -1	6.71	11	4.51	6.67	-6.45 6	.65	é	5 2	32.37	32.30	7.32	31.46
26 3	2.14	4.45 -4.45	0.0	321	17.94	16.C8 32.02	12.28 -1	0.38	::	6.55	6.52	4.66 -	5.6C	8	5 2	26.97	27.28	0.69	27.27
1 4 1	2.20	2.65 6.6	-2.89 C.U	521	71.83	71.57	-70.95 -	9.42	7 E E E	11.05	11.01	-5.16 -6	.22	10 11	5 Z	14.28	13.84	-12.79	5.30
3 4	c 17.22 c 17.00	16.86 0.C	16.88	621	40.66 52.02	42.99	-41.76 -1 52.52	0.21 1.56	5 E . 11 E .	6.44	10.40	3.44 4 6.76 1	-82 -02	12	5 2 5 2	23.05	22.17	7.02 -	21.03 5.88
-	47.21	22.64 0.0	-22.04	9 2 1	16.69	15.71	-10.41 1	1.76	12 1	5.12	5.12	4.34	.55	14	5 2	16.99	16.61	8.00	14.55
8 4	35.14	25.25 35.35	0.0		58.28	55.92	-54.72 -1	1.12	1 5				.27	16	5 2	5.48	6.94	-5.84	3.74
30 4	21.44	20.04 20.04	-7-37	13 2 1	39.03	38.24	34.17 1	5.50	1	5.62	10.12	16.12 -0		20	5 2	8.51	8.22	5.91	5.71
12 4	44.58	42.61 -43.61	0.0 C.U	15 2 1 16 2 1	4.93	5.83	-4.59	3.60	• • 7 •	2.25	2.56	-e.43 2	-41	22	5 2	5.13	6.03	1.87	5.74
15 4 16 4	c 7.16	7.45 C.C 17.14 -17.14	7.45 C+C	17 2 1 18 2 1	13.70	25.55	-11.70	4.86		\$1.C) 12.ft	11.45	10.56 C		2	62 62	18.22	18.90 20.38	2.25	18.17
19 4 20 4	12.76	11.02 13.02	5.85 C.O	20 2 1	11.16	10.20	8.57	5.57	4 6	12.11	5.71	-5.71	.c	5	6 Z	14.92	15.72	-2.34 -	-15.55
24 4	7.61	E.CE.ES	C.0	22 2 1	4.43	3.75	3.74	0.10	6 (24.55	24.1C	24.10			6 2	15.39	11.89	3.09	14.02
2 :	21.20	26.62 26.62	6.22	24 2 1	7.02	6.41	-5.79	2.16	e ()	17.00	16.10 -	16.10 0		10	6 2	13.55	13.44	-4.00 -	-12.83
	C 16.57	16.41 -16.41 25.63 G.C	L.U -35.83	26 2 1	5.13	4.42	4.15 -	1.52		29.8L 33.61	21.01 -	27.61	. G	13	6 2	10.26	10.40	-10.00	3.11
÷ •	C 42.43	4.00 4.00	C.0 41.78	031	44.97	47.41 71.31	0.0 4	7.41	12 (1	22.47	22.5L 21.46	22.50 0	.u .u	15 16	6 2 6 2	10.78	10.27	2.93	-9.9
8 5	C 14.12 C 12.67	12.72 13.72	6.0 6.0	2 3 1	62.12	62.74 24.59	24.90 -5	5.59	14 C 1	7.54	6.38	-6.78 0		17 19	6 Z	7.70 4.02	7.40	4.46	5.51
	C 22.56	42.41 C.C	42.45	631	61.43	60.84	17.04	8.40	16 C 1	22.21	22.41 -	23.46	.c	2	7 2	12.43	12.78	-6.87 -	-10.78 -1.56
		12.38 C.L	-13.38	831	36.32	35.69	21.27 -2		16 C	15.10	15.11	15.11 0		5	1 2	20.78	20.29	20.29	-0.06
11 1	21.41	25.51 6.6	-25.57	11 3 1	28.33	28.00	12.72 -2	4.54	ii i	10.14	5.54	-5.54		, 10-	1 2	19.02	17.95	-0.30 -	-6.35
20 E	1.15	1.46 1.68 4.14 C.C	4.14	13 3 1	20.70 17.70	19.69	9.43 1 5.60 -1	7.25		6.12 10.45	\$.13	\$.13 C	.0	11	1 2	11.72	11.26	-9.96	5.24
22	c 1.14 c 1.16	6.16 -6.18 6.67 C.C	0.0 -6.07	15 3 1 16 3 1	20.97	19.45	-18.98 -	9.97	1 1 2	21.21 42.16	22.10 42.10 -	16.28 -19 35.87 -19	5.56	14	1 2	1.71	3.26	3.04	1.17
0 e 1 e	(4(.4) 12.Li	41.15 -41.15	12.93	17 3 1	9.55	9.02	-2.75 1	3.74		24.11	52.56 - 12.56	47.71 22	.06	16	7 2 8 2	5.29	5.39	-5.11	-1.74 C.O
2 4	14.64	14.62 14.62 53.64 C.C	-53.64	20 3 1	11.89	11.49	-U.45 -1	1.4	6 1	24.12	41.56	32.37 10	.26	12	82	10.39	11.65	11.e3 -5.26	0.21
		22.50 20.50	32.07	22 3 1	5.36	5.62	-5.24 -	2.02		35.11	37.11 -	26.15 -31	.16	5	82	8.52	9.59	-3.19	-5.40
7 4	16.01	16.46 C.L	10.48	25 3 1	0.85	7.80	4.97	é.ci		21.24	28.36	23.36 -16	.08	7	82 82	8.86	8.08	8.02	-0.9!
5 6		24.41 6.6	-25.51	C 4 1 1 4 1	33.26	32.41 28.96	-32.41 28.34	9.0		21.27	12.12	-2.21 32 C.14 -10	.24	10	8 2	10.87	10.75	-4.65	-9.65
	12.00	11.50 -11.50	12.02	2 4 1	49.96	49.23 20.85	7.31 -4	8.78	14 1	11.4	11.12 -	-7.22 -20	. 87	12	8 2 9 2	10.96	11.96	11.33	3.62
14 e 37 e	6.11 6.11	6.43 6.43 8.4. 6.4	6.42	5 6 1	37.20	37.64 11.06	-1.53 3	7.41	16 1 17 1	7.44	7.68 6.11	2.15 -1	.13	1	92	3.93	6.91	-112	-6.84

R=0,090. Cette valeur, nettement supérieure à celle obtenue précédemment justifie la correction des intensités effectuées à l'aide de la formule (2).

Description de la structure

Les distances interatomiques et les angles de valences sont donnés sur la Fig. 3. La Fig. 4 donne la projection de la structure sur le plan xOz.

Précision des résultats

L'écart type $\sigma(r)$ sur les positions des atomes de carbone et d'oxygène est de 0,02 Å; il est de 0,004 Å pour l'atome de brome. En admettant que les atomes sont indépendants, nous obtenons un écart type de 0,03 Å pour les longueurs de liaison C-C et C-O et de 0,02 Å pour la distance Br-C(3). Les écarts type sur les angles de valence sont égaux au maximum à 1,5°.

Les valeurs de ces écarts sont relativement importantes; ceci montre que, bien que nous ayons effectué une correction de mise à l'échelle sur les valeurs des intensités, la précision des mesures n'atteint pas celle qui aurait été obtenue avec un cristal stable sous l'action des rayons X.

Géométrie de la molécule

Les atomes C(2), C(3), C(10), C(6), C(7), C(9) sont contenus dans un même plan. Un calcul de plan moyen,

dont les résultats figurent dans le Tableau 3, montre que l'écart le plus important est fourni par l'atome C(9)qui est distant de 0,032 Å de ce plan.

La distance C-Br est de 1,96 Å. Cette valeur est légèrement supérieure à 1,94 Å, valeur communément trouvée dans les composés paraffiniques (*Tables of Interatomic Distances and Configurations in Molecules and Ions*, 1965).

La distance carbone-oxygène est égale à 1,25 Å. Cette valeur est à rapprocher de celle trouvée pour le cyclohexanone (Romers, 1956) qui est de 1,24 Å. Elle est nettement plus élevée que celle qui avait été trouvé, pour la chloro-3-décalone-2 (Lapasset & Falgueirettes. 1971).

Fig. 3. Distances interatomiques et angles de valence de la bromo-3-décalone-2.

Tableau 2. Paramètres de position et d'agitation thermique de la bromo-3-décalone-2

Les écarts-type portant sur la dernière décimale sont donnés entre parenthèses; le facteur d'agitation thermique est égal à: $\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right],$

sauf pour les atomes	d'hydrogène po	ur lesquels B	isotrope = 3,5 Å	Å2.
----------------------	----------------	---------------	------------------	-----

	x	y	z	104 <i>β</i> 11	$10^{4}\beta_{22}$	104β ₃₃	$10^4 \beta_{12} = 10^4 \beta_{12}$	$\beta_{13} = 104\beta_{23}$
Br	0.3311 (1)	0.6116 (2)	0.4152 (3)	26 (0,2)	187 (2)	471 (5)	11 (1) 11	(1) 124 (4)
õ	0.2723(3)	0.2721(11)	0.3965 (15)	24 (2)	259 (18)	221 (27)	-2(5) -31	(7) 26 (24)
$\tilde{\mathbf{C}}(1)$	0.3012(4)	0.1410 (13)	0.7791 (23)	11 (2)	146 (20)	435 (51)	-8(5) -8	(8) 47 (31)
$\tilde{C}(2)$	0.2981 (3)	0.2795 (12)	0.5966 (23)	12 (2)	156 (18)	279 (39)	3 (5) 5	(8) 10 (30)
$\tilde{C}(3)$	0.3323 (4)	0.4355 (11)	0.6690 (18)	19 (2)	108 (15)	317 (41)	8 (5) 15	(8) 58 (21)
C(4)	0.3949 (4)	0.3876 (13)	0,7260 (21)	14 (2)	118 (15)	368 (44)	-5(5) -6	(7) 1 (32)
$\tilde{C}(\tilde{5})$	0.4600 (4)	0.1929 (13)	0,9459 (28)	12 (2)	187 (19)	560 (63)	-2(5) -25	(10) 99 (38)
ĊĺĠ	0.4650 (4)	0.0479 (16)	0.1386 (26)	10 (2)	261 (24)	481 (60)	14 (6) -2	(9) 59 (37)
$\vec{C}(\vec{7})$	0.4307 (4)	-0.1045 (15)	0,0588 (27)	16 (2)	182 (19)	566 (64)	23 (6) 14	(11) 82 (45)
Č(8)	0.3674 (4)	-0.0560 (12)	0,0008 (24)	14 (2)	118 (16)	544 (62)	1 (5) 4	(8) 78 (28)
C(9)	0.3645 (4)	0.0861 (13)	0,8172 (19)	12 (2)	134 (18)	290 (38)	-3(5) -4	(6) $-22(26)$
C(10)	0.3978 (3)	0,2433 (12)	0,9046 (25)	10 (1)	115 (14)	360 (41)	-1(4) -1	(8) 37 (29)
H(13)	0.277	0.035	0,714					
H(14)	0.284	0,184	0,950					
H(15)	0,314	0,492	0,828					
H(16)	0,416	0,496	0,805					
H(17)	0,416	0,353	0,559					
H(18)	0,483	0,302	0,010					
H(19)	0,478	0,152	0,776					
H(20)	0,509	0,012	0,157					
H(21)	0,449	0,092	0,313					
H(22)	0,431	-0,198	0,203					
H(23)	0,449	-0,158	0,896					
H(24)	0.346	-0,165	0,930					
H(25)	0,347	-0,016	0,169			1		
H(26)	0,382	0,044	0,645					
H(27)	0,379	0,044	0,075					

Tableau 3. Plans moyens importants

L'espac	e est rapporté à trois	axes orthou	normes Ox,	Oy, Oz dirigés	suivant a , b , c ;	les distances sor	nt exprimées e	nÅ.
Plan moyen	1 défini par C(2), C(2)	3), C(10), C(6), C(7), C(9)).				
		Equation	on du plan:	0,575 <i>X</i> -0,087	Y - 0,814Z = 1,22	3		
	Atome Distance au plan 1	C(2) -0,023	C(3) 0,013	C(10) -0,011	C(6) -0,0012	C(7) -0,0082	C(9) 0,032	
Plan moyen	2 défini par C(1), C(2	2), C(3), O						
		Equation	on du plan:	0,811X - 0,373	Y - 0,451Z = 3,42	2		
	Atome Distance au plan 2	C(1) 0,0042	C(2) -0,013	C(3) 0,0039	O 0,0053			
Plan 3 défini	par C(2), C(3), Br							

Equation du plan: 0.815X - 0.400Y - 0.419Z = 3.48Angle dièdre des plans No. 2 et 3 2.41°

L'angle C(1)–C(2)–C(3) est égal à 113,4°. Cette valeur est inférieure à celles obtenues par Romers pour la cyclohexanone (117°) et par nous-mêmes pour la chloro-3-décalone-2 (112,8°). De plus, l'angle entre les plans définis par C(1), C(2), C(3), O d'une part et C(2), C(3), Br d'autre part, n'est que de 2,47° au lieu de 15,6° prévu pour la cyclohexanone (Corey & Sneen, 1955); l'angle correspondant était de 3,17° pour le substitué chloré; ceci confirme la faible influence de la double liaison sur la conformation des cycles déduite de celle du cyclohexane (Mion, 1969); la déformation résiduelle est encore plus faible dans le substitué bromé que dans le composé chloré.

Nous avons calculé, pour chaque atome, les valeurs des écarts quadratiques moyens suivant les trois axes principaux des ellipsoïdes d'agitation thermique; les résultats figurent dans le Tableau 4.

Tableau 4. Mouvements d'agitation thermique et orientation des ellipsoides d'agitation thermique

L'espace est rapporté à un trièdre orthonormé 0X, 0Y, 0Zdont les axes sont dirigés suivant **a**, **b**, **c** respectivement. Le Tableau donne, pour chaque atome, l'écart quadratique moyen $\sqrt{u^2}$ suivant les trois axes principaux de l'ellipsoïde et les cosinus directeurs de ces axes.

		Cosinus d	irecteurs s	uivant
	$\sqrt{u^2}$	OX	ΟΥ	ΟZ
C (1)	0,207	0,730	-0,634	0,257
	0,182	0,629	0,769	0,112
	0,237	0,268	-0,080	-0,960
C(2)	0,258	0,398	0,678	0,619
	0,162	0,070	-0.872	0,484
	0,203	0,732	-0,285	-0,619
C(3)	0,181	0.893	-0.215	-0.395
. ,	0,223	0,140	0,968	-0.209
	0,208	0,427	0,132	0,894
C(4)	0.166	0.927	0.375	0.018
	0,209	0,323	-0.821	0.471
	0,266	0,191	-0,431	-0,882
C(5)	0,197	0,997	-0,059	-0,044
	0,177	0,041	0,945	-0,324
	0,295	0,060	0,322	0,945

Tableau 4 (suite)

C(6)	0,174	0,755	- 0,650	0,085
	0,244	0,558	0,56 <i>a</i>	-0,605
	0,316	0,345	0,504	0,792
C(7)	0,161	0,963	-0,248	0,102
	0,304	0,161	0,841	0,517
	0,255	0,214	0,481	-0,850
C(8)	0,166	0,931	-0,159	0,328
	0,219	0,288	0,872	-0,396
	0,316	0,223	-0,464	-0,858
C(9)	0,169 0,182 0,239	0,985 0,167 0,044	0,172 -0,917 -0,360	$-0,020 \\ 0,362 \\ -0,932$
C(10)	0,175	0,871	0,355	0,339
	0,200	0,490	-0,672	-0,554
	0,218	0,032	0,649	-0,760
0	0,312	0,430	0,583	0,689
	0,258	0,897	-0,194	-0,396
	0,192	0,097	-0,789	0,607
Br	0,273 0,290 0,154	0,799 0,444 0,407	0,512 - 0,856 - 0,072	-0,316 -0,266 0,911

Empilement des molécules

La forme de la molécule est assez compacte, et comme pour la chloro-3-décalone-2, les contacts entre molécules voisines sont du type de van der Waals.

Conclusion

Malgré la décomposition assez rapide de la bromo-3décalone-2 sous l'action des rayons X, nous avons pu obtenir la conformation moléculaire de ce composé avec une précision acceptable. Nous pensons que ce résultat n'a pu être obtenu que grâce à la correction d'intensité originale que nous avons effectuée. Une correction analogue doit pouvoir être utilisée dans l'étude de tout produit se décomposant sous l'action des rayons X.

Nous remercions Monsieur le Professor Casadevall de nous avoir suggéré cette étude.

Fig. 4. Projection de la structure de la bromo-3-décalone-2 sur le plan x0z.

Reférences

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- COREY, E. J. & SNEEN, R. A. (1955). J. Amer. Chem. Soc. 77, 2505.

IBERS, A. (1969). Acta Cryst. B25, 1667.

- LAPASSET, J. & FALGUEIRETTES, J. (1971). Acta Cryst. B27, 108.
- MION, L. (1969). Thèse, No. 852, C.N.R.S. AO 3428.
- ROMERS, C. (1956). Rec. Trav. Chim. Pays-Bas, 75, 956.
- Tables of Interatomic Distances and Configurations in Molecules and Ions (1965). Ed. L. E. SUTTON. London: The Chemical Society.

Acta Cryst. (1971). B27, 630

The Crystal and Molecular Structure of Cyclopropane-1,1-dicarboxylic Acid

BY MARTHIE A. M. MEESTER, H. SCHENK AND CAROLINE H. MACGILLAVRY

Laboratory for Crystallography, University of Amsterdam, Nieuwe Prinsengracht 126, Amsterdam, The Netherlands

(Received 16 July 1970)

Cyclopropane-1,1-dicarboxylic acid forms triclinic crystals of space group PT with cell constants a = 12.045, b = 13.822, c = 5.286 Å, $\alpha = 137.53$, $\beta = 92.22$, $c = 89.88^{\circ}$, Z = 4. X-ray intensities were measured with the help of a Nonius automatic single-crystal diffractometer. The structure was solved by means of the Patterson technique and refined by a block-diagonal least-squares procedure. The final discrepancy index was 4.3% for 1669 independent reflexions. The molecules have intramolecular $O \cdots O$ hydrogen bonds of 2.563 Å and are arranged in strings along the y axis by means of $O \cdots O$ hydrogen bonds of 2.641 Å. The length of the bond of the cyclopropane group opposite to the carboxylic groups is 1.462 Å and the other two bonds of this ring are 1.531 and 1.538 Å. The e.s.d.'s in the bond lengths are approximately 0.004 Å.

Introduction

In dicarboxylic acids a large value of the ratio of the first and second dissociation constants K_1/K_2 is an indication of intramolecular hydrogen bonding. For instance fumaric acid, which has a K_1/K_2 ratio of 23.2 cannot form an intramolecular hydrogen bond on

sterical grounds. Maleic acid on the other hand has a K_1/K_2 ratio of 20200 and in this acid the COOH groups are so situated that intramolecular hydrogen bonding may take place.

Cyclopropane-1,1-dicarboxylic acid has a K_1/K_2 ratio of 40600, which suggests a strong intramolecular hydrogen bond. In accordance with this the mechanism